If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+81x+60=0
a = 9; b = 81; c = +60;
Δ = b2-4ac
Δ = 812-4·9·60
Δ = 4401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4401}=\sqrt{9*489}=\sqrt{9}*\sqrt{489}=3\sqrt{489}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(81)-3\sqrt{489}}{2*9}=\frac{-81-3\sqrt{489}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(81)+3\sqrt{489}}{2*9}=\frac{-81+3\sqrt{489}}{18} $
| 9x^2+81x+1800=0 | | 3^(2x-3)=27 | | 9x^2+864x+1800=0 | | 9000x^2+864x+1800=0 | | 22+t÷3=15 | | -24=-6x-3(-x+19) | | 4n2+32n+28=0 | | 80x^2+108x+2048=0 | | 2/4x-3/5=2/5 | | 5(x-2)^2-20=0 | | 44=4x+3(-3x-2) | | 3/2b+1=1/2b+2 | | 3/2b+1=1/2b | | 7d-5d=-5d+1 | | (2n+5)=3(3-10)n | | -.6b+7+.4b=19 | | 8b+30=6b+50 | | 1/5p=16 | | -0.7r+2=-4r-1.5 | | 2(4)^(x-1)=32 | | 110b-28+10b=26b-30 | | -11.6x+1.7=-66.9-1.8 | | 11.6x+1.7=-66.9-1.8x | | 4y=y+37 | | 2(4)^x-1=32 | | (7x-4)^2=16 | | .6b+7+.4b=19 | | -6m+3=3m+12 | | -24=-1x | | -24/a=-4 | | 1y+1/2=5×4 | | x^2×x^2(x^2-2)=80 |